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2 HEIN VAN WINKEL

0. Wandering in the Wonderful world of Numbers

.
Last winter I was on a wintering-holiday in India. And if you can point your antennas on
it, you will find history of mathematics everywhere. At the observatories in Jaipur and
Varanasi, at a temple with an ancient magic square in Khajuraho, you have the feeling of
walking in the footsteps of historical mathematicians. After all, they were in many ways
arithmatic pioneers in India. In the time of the European mathematicians Euler, de Fer-
mat, Mersenne, and Huygens, all kinds of arithmetic properties were rediscovered. Some
have been proven, others are still sources of research and conjecture.
One of the areas of these ancient times concerns Heron triangles, triangles with sides and
area equal to integers. Heron is the Greek hero of the story and Bhaskara and Brahmagupta
are the heroes of India.
The question that came to my mind is, ”Would there be a tetrahedron with four Heron
triangles and integer volume?” [9]. And then the next question was: ”Are there enough
triangles with sides that fit together to make such a tetrahedron at all?”
In searching this matter I came across the concept of Heron trilaterals. (See figure 3). I
call the part of the figure of the side AB the Heron skeleton. (See figure 4). The tangent
point C0 of the inner circle lies on the side AB. I have made a program with SageMath.
It needs input c = AB and x = AC0. It gives as ouput the possible Heron triangles, which
can be constructed on the Heron skeleton (c, x).
I looked for Heron triangles with a side of given length and I found a wonderful world of
numbers. The world of positive integers, of the rational numbers, of the quadratic num-
bers, of Bhaskara’s equations, once erroneously called Pell’s equations, of the (finite and
periodic) continued fractions and their convergents.

Section 1 provides an introduction to Heron trilaterals. Because I will not be concerned
with degeneracies, I will only use the set N = Z+ for the positive integers. After all, 0 has
ever been added. Section 2 follows the construction of the heroncx program in SageMath.
The listing of the program is included in Appendix A. Section 3 contains some findings
when playing with heroncx. It contains enough questions to expand this article with some
chapters on continued fractions and solutions of the Bhaskara equation x2− dy2 = c2 from
sections 2.3 and 2.4. and who knows what else.

Hein van Winkel.
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1. Heron trilaterals

Figure 1. Heron triangle

Notations. The sidelengths of BC,AC,AB are respectively a, b, c. The sizes of the
interior angles of 4ABC are α = ∠A, β = ∠B, γ = ∠C. The tangentpoints of the incircle
with the sides a, b, c of the triangle are respectively A0, B0, C0. The lenghts of the tangents
from the vertices to these tangentpoints are AB0 = AC0 = sa, BA0 = BC0 = sb, CA0 =
CB0 = sc. The sum of these six tangents is the perimeter of the triangle. The half perime-
ter is the first letter s of semi-perimeter. The incircle has midpoint I and radius r. The
letter F is used for the size of the area of the triangle.

Definition 1.1. 4ABC is a Heron triangle if a, b, c, F ∈ N.

Some basic properties without proof:

Proposition 1.2. sa = s− sb − sc = s− a, sb = s− b, sc = s− c

Proposition 1.3. s = sa + sb + sc

Proposition 1.4 (Heron’s formula). F =
√
s · sa · sb · sc

Proposition 1.5. F = r · s

Proposition 1.6. r2s = sa · sb · sc ⇔ r2(sa + sb + sc) = sa · sb · sc

Proposition 1.7. sa
r + sb

r + sc
r = sa

r ·
sb
r ·

sc
r

Proposition 1.8. In a Heron tirangle each off the a, b, c, sa, sb, sc, s, F ∈ N and r ∈ Q.
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Adding the excircle with centre Ic at the side c of 4ABC gives figure 2. The tangent
points with the sides a, b, c or their extentions are respectively Ac, Bc, Cc, and the exradius
rc = IcCc.

Figure 2. Excircle Ic

Another set of basic properties (some without proof):

Proposition 1.9. CAc = s.

Proof: CAc + CBc = 2 ∗ CAc = a+ b+ c = 2s⇒ CAc = s.

Proposition 1.10. ABc = ACc = s− b = sb, BAc = BCc = sa

Proposition 1.11. F = rcsc
Proof: tan(γ2 ) = rc

s = r
sc
⇒ rcsc = rs = F .

Proposition 1.12. rrc = sasb
Proof : AI⊥AIc ⇒ sb

rc
= r

sa
⇔ rrc = sasb

Proposition 1.13. rrarbrc = F 2.
Proof : According to 1.11 is rrarbrc = F

s
F
sa

F
sb
F
sc

and according to Heron’s formula is
√
s · sa · sb · sc = F . Then it follows that rrarbrc = F

s
F
sa

F
sb
F
sc

= F 4/F 2 = F 2 is.

Proposition 1.14. F = rrarbrc
rs = rarbrc

s
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Proposition 1.15. rarb + rbrc + rcra = s2

Proof : rarb + rbrc + rcra = rarbrc(
1
ra

+ 1
rb

+ 1
rc

) = sF ( saF + sb
F + sc

F ) = s2

Definition 1.16. A Heron trilateral is a configuration of three lines a, b and c, inter-
secting each other in three different points A,B,C such that 4ABC is a Heron triangle.
If there is no confusion the letters a, b, c are used as the lines and as the lenght of the sides
of the triangle. (See figure 3)

Figure 3. Heron trilateral

Notations. The incircle of 4ABC with center I is tangent at the points A0, B0, C0 on
the side a, b, c respectively. The excircle, tangent at side a, with center Ia is tangent in the
points Aa, Ba, Ca at the side a, b, c respectively. The radius of this circle is ra.
The length of the tangent from C to the excircle with center Ic is defined to be the negative
number s′c = −s and the length of the tangents from A and B at circle Ic are s′a = sb and
s′b = sa respectively. By definition is s′ = s′a + s′b + s′c.

Propositon 1.17. s′ = −sc and r′ = −r.
Proof : s′ = s′a + s′b + s′c = sb + sa − s = −sc.
From F = r · s = r′ · s′ follows r′ = r·s

s′ = r·s
−sc = −rc.
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Proposition 1.18. With the notations of s′ and s′a, heron’s formel is still valid.
Proof : F =

√
s′ · s′b · s′a · s′c =

√
−sc · sa · sb · −s =

√
s · sa · sb · sc

Figure 4. Heron skeleton

Definition 1.19. After removing quite a bit from the figures in this section a so-called
Heron skeleton remains. It consists of the side AB with length c of 4ABC and the ra-
dius IC0 of the incircle with their tangent point. The length of AC0, BC0, C0I is sa, sb, r
respectively as in the foregoing. The length sa and sb are in N. The length of r is in Q.
In section 2 follows an investigation of the possible values of r such that the skeleton can
be extended to an heron trilateral.

Definition 1.20. Let M be the center of the line segment A0Ac. Then by definition
CM = tc.

Proposition 1.21. tc = sc + c/2 = (s+ sc)/2.
Proof: CM = tc = sc + 1

2(s− sc) = 1
2(s+ sc) = (sa + sb + 2sc)/2 = (c+ 2sc)/2 = sc + c/2.

Proposition 1.22. If c is even then tc ∈ N. If c = odd then tc + 1
2 ∈ N

Proof. This follows immediately from 1.21.

Theorem 1.23 If (tc, sa, sb) describes the Heron trilateral (a, b, c) then (−tc, sa, sb) de-
scribes the same Heron trilateral H(a, b, c).
Proof.
sc = tc − c/2 by (1.21) and
s = sc + c = sc + c/2 + c/2 = tc + c/2.
For tangents at the excircle Ic holds:
s′a = sb
s′b = sa
s′c = −s = −(tc + c/2) = (−tc)− c/2
s′ = −sc = −(tc − c/2) = (−tc) + c/2.
And this proves that (−tc, sa, sb) describes the same Heron trilateral.

Proposition 1.24. The inradius of an heron-skeleton is less than
√
sasb.

Proof. Let the skeleton in figure 5 have CD =
√
AC · CB =

√
sasb. Then AD⊥BD. Then
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Figure 5. limit figure

the tangentpoints E and F are collinear with D and the tangents AF and BE are parallel
and there is no triangle. When CD <

√
sasb the tangents intersect each other in a point

at the same side of AB as point D does and the circle is the incircle. When CD >
√
sasb

the tangents intersect each other in a point at the other side of AB as point D does and
the circle is the excircle at side AB of the triangle.
REMARK : By proposition 1.12 is rrc = sasb.
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2. Incircle radius of heron trilaterals

This section explores the possible values of the inradius r such that the skeleton of figure
4 is a Heron skeleton. The solution to the problem is highly dependent on the values of
p = sasb and c = sa + sb.
Use is made of some of the statements (C1 - C6) formulated in the article by Keith Con-
rad [3], [4] :

• Theorem C.1 ([3]Theorem 4.1). If X2 − dY 2 = 1 has solutions (x, y) and (x′, y′)

then the coefficients of (x+ y
√
d)(x′ + y′

√
d) are also a solution.

• Corollary C.2 ([3]Corollary 4.2).. If X2 − dY 2 = 1 has a solution (x, y) then the

coefficients of (x+ y
√
d)n are also a solution for all n ∈ Z. In particular, this Pell

equation has infinitely many solutions if it has a nontrivial solution.

• Theorem C.3 ([3]Theorem 5.3).. Assume x2 − dy2 = 1 has a solution in positive
integers and let (x1, y1) be such a solution where y1 is minimal. Then all solutions
to x2−dy2 = 1 in integers are, op to sign, generated from (x1, y1) by taking powers

of x1 + y1
√
d:

x+ y
√
d = ±(x1 + y1

√
d)n

for some n ∈ Z and some sign.

• Theorem C.4 ([4]Theorem 2.3). (Lagrange, 1768). For any positive integer d that
is not a square, the equation x2 − dy2 = 1 has a nontrivial solution.

• Theorem C.5 ([4]Theorem 3.3).. Fix u = a+ b
√
d where a2 − db2 = 1 with a and

b in Z+. For each n ∈ Z− {0}, every solution of x2 − dy2 = n is a Pell multiple of
a solution (x, y) where

| x |≤
√
| n | u and | y |≤

√
| n | u/

√
d

• Corollary C.6 ([4]Corollary 3.4). . For any generalized Pell equation x2−dy2 = n
with n 6= 0 there is a finite set of solutions such that every solution is a Pell multiple
of one of these solutions.

Heron’s formula F 2 = sasbscs = (sasb)sc(sc + sa + sc =

F 2 = psc(sc + c)(1)

Solving this equation depends on the values of p and c. The different solutions are
described in the following subsections. Appendix A contains the program listing of the
function heroncx with input respectively the length of AB and AC0 in figure 4 and output
the heron trilaterals in the format (inradius, a, b, c, area).
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2.1. SQE ( p is a perfect square and c is even ). .
Let p21 = p. From equation 1 follows p21 = p|F 2 ⇒ p1|F ⇒ F = p1B with B ∈ N
Let c0 = c/2⇒ tc = sc + c0(tc ∈ N).
After substitutions and some math equation 1 becomes

psc(sc + c) = F 2 ⇔ p21(s
2
c + 2scc0) = p21B

2

⇔ s2c + 2scc0 = B2

⇔ (sc + c0)
2 = B2 + c20

t2c −B2 = c20(2)

Solving equation (2) in N gives:

(tc +B)(tc −B) = c20 ⇔ tc +B = d1 ∧ tc −B = d2

tc =
d1 + d2

2
=
d21 + c20

2d1
∧B =

d1 − d2
2

=
d21 − c20

2d1

with (d1d2 = c20), d1 > d2 > 0 and d1 and d2 must have the same parity, because their sum
and difference must be divisible by 2.
The solution (tc, B) gives sc + c0 = tc and F = p1B and

sc = tc − c0 =
d21+c

2
0

2d1
− c0 = (d1−c0)2

2d1

s = tc + c0 =
d21+c

2
0

2d1
+ c0 = (d1+c0)2

2d1

F = p1B = p1 ·
d21−c20
2d1

r = p1B
tc+c0

= p1 ·
d21−c20
2d1
· 2d1
(d1+c0)2

= p1 · d1−c0d1+c0

(3)

Example 2.1 sqe with c = 10, p = 9, equivalent sa = 1, sb = 9.

psc(sc + c) = F 2 ⇔ 9(s2c + 10sc) = 9B2

⇔ t2c −B2 = 25

d1 d2 tc B sc s a b c F r ra rb rc
25 1 13 12 8 18 17 9 10 36 2 36 4 9

2

2.2. SQO ( p is a perfect square and c is odd). .
Let p21 = p. From equation 1 follows p21 = p|F 2 ⇒ p1|F ⇒ F = p1B with B ∈ N
tc = sc + c/2⇒ 2tc = 2sc + c with 2tc ∈ N ∧ tc /∈ N
After substitutions and some math equation 1 becomes

psc(sc + c) = F 2 ⇔ p21(s
2
c + scc) = p21B

2

⇔ s2c + c · sc = B2 ⇔ 4s2c + 4c · sc = 4B2

⇔ 4s2c + 4c · sc + c2 = 4B2 + c2 ⇔ (2tc)
2 = (2B)2 + c2



10 HEIN VAN WINKEL

With 2tc = X odd and 2B = Y even

⇔ X2 − Y 2 = c2(4)

Solving equation (4) in N gives:

(X + Y )(X − Y ) = c2 ⇔ X + Y = d1 ∧X − Y = d2

X =
d1 + d2

2
∧ Y =

d1 − d2
2

with d1d2 = c2, d1 > d2 > 0. Because d1d2 = c2 is odd, d1 and d2 are both odd and X,Y
must be in N..
The solution (X,Y ) = (2tc, 2B) gives

tc = X/2 = d1+d2
4 =

d1+
c2

d1
4 =

d21+c
2

4d1
and

B = Y
2 = d1−d2

4 =
d1− c2

d1
4 =

d21−c2
4d1

.

The solution (tc, B) gives :
sc = tc − c

2 =
d21+c

2

4d1
− c

2 = (d1−c)2
4d1

s = tc + c
2 =

d21+c
2

4d1
+ c

2 = (d1+c)2

4d1

F = p1B = p1 ·
d21−c2
4d1

r = p1 ·
d21−c2
4d1
· 4d1
(d1+c)2

= p1 · d1−cd1+c

(5)

Example 2.2 sqo with c = 13, p = 36, equivalent sa = 4, sb = 9.

psc(sc + c) = F 2 ⇔ 36(s2c + 13sc) = 36B2

⇔ (2sc + 13)2 = 4B2 + 169

⇔ (2tc)
2 − (2B)2 = 169

d1 d2 2tc 2B sc s a b c F r ra rb rc
169 1 85 84 36 49 45 40 13 252 36

7 63 28 7

2.3. NQE ( p is not a perfect square and c is even ). .
Let p0 be the square-free part of p = p0p

2
1 ⇒ p0|F 2 ⇒ p0|F ⇒ F = p0U with U ∈ N

Let c0 = c/2 and tc = sc + c0.
After substitutions equation 1 becomes:

psc(sc + c) = F 2 ⇔ p0p
2
1(s

2
c + 2scc0) = p20U

2

⇔ p21(s
2
c + 2scc0) = p0U

2
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Here is p21|p0U2 with p0 square-free. If q is a prime factor of gcd(p0, p1) then p21 must have
an even number of factors q en thus p21|U2 ⇒ U = p1B with B ∈ N. And the equation
becomes now:

psc(sc + c) = F 2 ⇔ p21(s
2
c + 2scc0) = p0p

2
1B

2

⇔ s2c + 2scc0 = p0B
2

⇔ s2c + 2scc0 + c20 = p0B
2 + c20

⇔ t2c − p0B2 = c20

Then (tc, B) is a solution to the Bhaskara-Pell-equation

⇔ X2 − p0Y 2 = c20(6)

This equation has for all the values of p0 and c0 in the context of this article one or more
series of solutions. (See C.6 on page 8). Let α = α0 + α1

√
p0 = (α0, α1) be the solution

to X2 − p0Y 2 = 1 with α0, α1 ∈ N and α1 minimal. Let β = β0 + β1
√
p0 = (β0, β1) be

a solution to X2 − p0Y 2 = c20. There is allways one such β, namely β = c0. This gives
the series solutions ±βαi, i ∈ Z. There exist a finite number of such series. Restriction to
X,Y > 0 does not result in a loss of Heron trilaterals according theorem 1.23.

The solution (tc, B) = (X,Y ) to equation 6 gives :
sc = tc − c

2 = 2tc−c
2 = 2X−c

2
s = tc + c

2 = 2tc+c
2 = 2X+c

2
F = p0U = p0p1B = p0p1Y

r = F
s = 2pop1B

2tc+c
= 2pop1Y

2X+c

(7)

Example 2.3 nqe with c = 10 and p = 4 · 6 = 24 and so p0 = 6, p1 = 2, sa = 4, sb = 6.

psc(sc + c) = F 2 ⇔ 24(s2c + 10sc) = F 2

⇔ 6 · 22(s2c + 10sc) = 62U2

⇔ 22(s2c + 10sc) = 6U2 ⇔ 22(s2c + 10sc) = 6 · (2B)2

⇔ s2c + 10sc = 6B2 ⇔ (s2c + 5)2 = 6B2 + 25

⇔ X2 − 6Y 2 = 25

5 + 2
√

6 is the ’smallest’ solution to X2 − 6Y 2 = 1.
(5, 0) is solution to X2 − 6Y 2 = 25
One of the series of solutions is ±5(5 + 2

√
6)i, starting with ±(25 + 10

√
6),±(245 +

100
√

6), · · · ,±(25− 10
√

6), · · · . From this series follows with positive X,Y :

X = tc Y = B sc s a b c F r ra rb rc
25 10 20 30 26 24 10 120 4 230 20 6
245 100 240 250 1200 246 244 10 24

5 300 200 5
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2.4. NQO (p is not a perfect square and c is odd ). .
Let p0 be the square-free part of p = p0p

2
1 ⇒ p0|F 2 ⇒ p0|F ⇒ F = p0U with U ∈ N

So the equation 1 becomes:

psc(sc + c) = F 2 ⇔ p0p
2
1(s

2
c + scc) = p20U

2

⇔ p21(s
2
c + scc) = p0U

2

Here is p21|p0U2 with p0 square-free. If q is a prime factor of gcd(p0, p1) then p21 must have
an even number of factors q en thus p21|U2 ⇒ U = p1B with B ∈ N.
c is odd ⇒ 2tc = 2sc + c is odd too.
And the equation 1 becomes:

psc(sc + c) = F 2 ⇔ p21(s
2
c + scc) = p0p

2
1B

2

⇔ s2c + scc = p0B
2

⇔ 4s2c + 4scc = 4p0B
2

⇔ 4s2c + 4scc+ c2 = 4p0B
2 + c2 ⇔ (2tc)

2 = p0(2B)2 + c2

⇔ (2tc)
2 − p2B2 = c2

With p2 = 4p0.

Then (2tc, B) is a solution of the Bhaskara-Pell-equation

X2 − p2Y 2 = c2(8)

This equation has for all the values of p2 and c in the context of this article one or more
series of solutions. (See C.6 on page 8). Let α = α0 + α1

√
p0 = (α0, α1) be the solution

to X2 − p2Y 2 = 1 with α0, α1 ∈ N and α1 minimal. Let β = β0 + β1
√
p0 = (β0, β1) be a

solution to X2 − p0Y 2 = c2. There is allways one such β, namely β = c. This gives the
series solutions ±βαi, i ∈ Z. There exist an finite number of such series.
The solution (X,Y ) = (2tc, B) to equation 8 gives :

The solution (tc, B) gives :
sc = tc − c

2 = 2tc−c
2 = X−c

2
s = tc + c

2 = 2tc+c
2 = X+c

2
F = p0U = p0p1B = p0p1Y

r = F
s = 2pop1B

2tc+c
= 2pop1Y

X+c

(9)

Example 2.4a nqo with c = 9 and p = 3 · 6 = 18 and so sa = 3, sb = 6, p0 = 2, p1 = 3.

psc(sc + c) = F 2 ⇔ 18(s2c + 9sc) = F 2

⇔ 2 · 32(s2c + 9sc) = 22U2

⇔ 32(s2c + 9sc) = 2U2 ⇔ 32(s2c + 9sc) = 2 · 32B2

⇔ s2c + 9sc = 2B2 ⇔ 4s2c + 4 · 9sc + 81 = 8B2 + 81

⇔ (2sc + 9)2 − 8B2 = 81⇔ (2tc)
2 − 8B2 = 81
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3 +
√

8 is the ’smalllest’ solution to X2 − 8Y 2 = 1.
9 is a solution to X2 − 8Y 2 = 81.
One of the series solutions is ±9(3 +

√
8)i, starting with 27 + 9

√
8, 153 + 54

√
8, · · · ,−9(3−√

8) = −27 + 9
√

8, · · · .
We are interested in solutions with positive B, so we get:

X = 2tc Y = B sa sb sc s F a b c r ra rb rc
27 9 3 6 9 18 54 15 12 9 3 18 9 6
153 54 3 6 72 81 324 78 75 9 4 108 54 9

2

Example 2.4b nqo with c = 11 and p = 3 · 8 = 24 and so sa = 3, sb = 8, p0 = 6, p1 = 2.

psc(sc + c) = F 2 ⇔ 24(s2c + 11sc) = F 2

⇔ 6 · 22(s2c + 11sc) = 62U2

⇔ 22(s2c + 11sc) = 6U2 ⇔ 22(s2c + 11sc) = 6 · 22B2

⇔ s2c + 11sc = 6B2 ⇔ 4s2c + 4 · 11sc + 121 = 24B2 + 121

⇔ (2sc + 11)2 − 24B2 = 121⇔ (2tc)
2 − 24B2 = 121

5 +
√

24 is the ’smalllest’ solution to X2 − 24Y 2 = 1.
11 is a solution to X2 − 24Y 2 = 121.
One of the series solutions is±11(5+

√
24)i, starting with 55+11

√
24, 539+110

√
24, · · · ,−11(5−√

24) = −55 + 11
√

24, · · · .
We are interested in solutions with positive B, so we get:

X = 2tc Y = B sa sb sc s F a b c r ra rb rc
55 11 3 8 22 33 132 30 25 11 4 44 33

2 6
539 110 3 8 264 275 1320 272 267 11 24

5 440 165 5

2.5. heron(c,x). .
This subsection is a description of the heroncx(c,x) program with input a Heron skeleton
and with output sometimes singular Heron trilaterals of some infinite series of Heron tri-
laterals.

INPUT-OUTPUT:

• INPUT

aantal = a

(table(heroncx(c,x)))

The last two lines of the program contain the input lines. Where c is the length
of AB in the skeleton and x = AC0 = sa, the length of the tangent line from A
to the incircle. The desired number of rows of the infinite series can be indicated
with the number a.
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• OUTPUT A table with a row for each Heron trilateral and a column for the values
of r, a, b, c, F , which are the values of the inradius, the length of a, b, c and the area
of the triangle. The first a triangles of the infinite series are noted.

STRUCTURE of the program (for the letters A-U see appendix A):

A: Here the program is divided into four parts, corresponding to (B-C)SQE(2.1),
(D-E)SQO(2.2), (H-N)NQE(2.3) and (O-T)NQO(2.4) in section 2.

B: Initiation: definition/calculation of c0, p1 and the outputlist sol.
C: Divisors of c20, solution of t2c−B2 = c20 ⇔ X2−Y 2 = c20 and formatting the ouput.
D: Initiation: definition/calculation of p1 and the outputlist sol.
E: Divisors of c2, solution of (2tc)

2− (2B)2 = c2 ⇔ X2−Y 2 = c2 and formatting the
ouput.

F: bhaskara(d). Program to find the ’smallest’ solution of the Bhaskara (Pell)
equation x2 − dy2 = 1 with input d.

G: bhaskara g(d,g). Program to find the series of solutions of the Bhaskara equa-
tion x2− dy2 = n with input: (d, n). This part make use of F and an intern list sol
of rows. The ouput is a solution as described in theorem C.3 in at the beginning
of this section.

H-I: Start of NQE. Definition/calculation of c0, p, p0, p1 and the outputlist sol.
J-M: Some series of solutions from G in the list solu can be the same series. In this

part only one of each different series stays in solB.
N: Formatting the ouput.
O-P: Start of NQO. Definition/calculation of c0, p, p0, p1, p2 and the outputlist sol.
Q-S: See J-M.
T: Formatting the ouput.
U: Start of the program. Here the input values for number and heroncx must be

entered.

3. Observations - Questions - Remarks

3.1. More obtuse-angled than acute-angled trilaterals for small area’s. .

Nobody is perfect. I debugged the program and found trilaterals with some of the
a, b, c, F /∈ N. Debugging was so intense at times that some trilaterals disappeared. I
found table 1 of primitive heron triangles up to an area of 396 on wiki[7]. I decided to
complete the debugging by checking if all the triangles from the table on input of 2 (isosce-
les triangles) or 3 (scalene triangles) skeletons were in the output. I added a column with
I(soscele), A(cute), R(ight-angled) and O(btused-angled) triangles. I noticed that there
were many more obtuse-angled triangles up to the area of 396.

3.2. c = a+ b with a · b is a perfect square. .
DEFINITION: A Heron skeleton with only a finite number of Heron trilaterals is called a
singular Heron skeleton.
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The corresponding Heron trilaterals have at least one of sasb, sbsc or scsa equal to a perfect
square. This leads to the question: ’Which numbers c are the sum of two positive numbers
a and b such that their product a · b is a perfect square?’ See table 2 : , the singular Heron
skeletons with c < 150 and p a perfect square. Remark : the first element (2, 1) in this
table is not a Heron skeleton

Let n = 2t ∗ pa11 ∗ p
a2
2 ∗ ... ∗ parr ∗ q

b1
1 ∗ q

b2
2 ∗ ... ∗ qbss for different pi and qj

with t ≥ 0, ai ≥ 0, pi ≡4 1, bj ≥ 0, qj ≡4 3 for i = 1, · · · , r; j = 1, · · · , s

Some sequences from OEIS:

A000404: Numbers that are the sum of 2 nonzero squares.
n ∈ A000404⇔ (bj ≡2 0 for j = 1, · · · , s) ∧ (r > 0 ∨ t ≡2 1)

A005843: The nonnegative even numbers: a(n) = 2n
t > 0

A004613: Numbers that are divisible only by primes congruent 1 mod 4.
r > 0 ∧ t = s = 0

A004614: Numbers that are divisible only by primes congruent 3 mod 4.
s > 0 ∧ t = r = 0

A018825: Numbers that are not the sum of 2 nonzero squares.
Complement of A000404.
n ∈ A018825⇔ n /∈ A000404⇔ (bj ≡2 1 for j = 1, · · · , s) ∨ (r = 0 ∧ t ≡2 0)

A337140: Numbers n such that n is the sum of two positive integers a and b such
that their product p = ab equals a perfect square.
A005843 ⊂ A337140. Proof n ∈ A005843 then n = 2k = k + k and p = k ∗ k is a
perfect square.
A004613 ⊂ A337140. Proof n ∈ A004613 then n = pi · n1 = (u2 + v2) · n1 =
u2n1 + v2n1 and p = u2n1 + v2n1 = (uvn1)

2 is a perfect square.

n ∈ A337140 \ (A005843 ∪ A004613) ⇔ n = qb11 ∗ q
b2
2 ∗ ... ∗ qbss ∈ A018825 Let now

n = pi ∗ n1 = pi ∗ (u2 + v)⇒ p = p2iu
2v with v is not square for all u2 < n1.

3.3. How many singulars for (c, sa), if sasb is a perfect square? .
The number of triangles in each skeleton is stated in table 2. It is remarkable that at
constant c the number of singular solutions is equal for each possible (sasb).

3.4. Are there Heron tirangles, that are singulars to 2 or 3 sides? .
Table 1 lists the number of singular Heron skeletons listed in the column type. The triangle
with sides (8,5,5) with type OI-3 is an obtused-angled isoscele triangle with three singular
Heron skeletons. The triangle with sides (41,40,17) is acute-angled and has 1 singular
Heron skeleton. It is remarkable that for primitive triangles with area up to 396:

• there are no triangles with two singular skeletons.
• there are only three triangles with three singular skeletons.
• Only triangle (8,5,5) has three singular skeletons with only one heron trilateral,

each.
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3.5. How many series for (c,p), when p is not a perfect square? .
Theorem 3.3 in Conrad’s Pell’s Equations II [4](See C.5 on page 8) is basic to this question.

3.6. Some results with heroncx. .

Heroncx(3,1):

r a b c F
1 5 4 3 6
4
3 26 25 3 36
7
5 149 148 3 210
24
17 866 865 3 1224
41
29 5045 5044 3 7134
140
99 29402 29401 3 41580
239
169 171365 171364 3 242346
.. .. .. .. ..

Figure 6. H(5, 4, 3)

The first row is the rectangled Heron trilateral HT(5,4,3).
Some additional values are The second row is the obtuse-angled Heron trilateral HT(26,25,3).

s sa sb sc F r ra rb rc
6 1 2 3 6 1 6 3 2

Some additional values are
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s sa sb sc F 4
3 ra rb rc

27 1 2 24 36 4
3 36 18 3

2

3.7. Some strong relations between r and convergents of
√
sasb. .

In the next table are the series of inradii r and exradii rc compared with the convergents
p2(i)/q2(i) from the continued fraction of

√
2.

i 1 2 3 4 5 6 7 · · ·
r 1 4/3 7/5 24/17 41/29 140/99 239/169 · · ·
rc 2 3/2 10/7 17/12 58/41 99/70 338/239 · · ·
p2(i) 1 3 7 17 41 99 239 · · ·
q2(i) 1 2 5 12 29 70 169 · · ·

It is remarkable that the convergents of
√

2 are alternating the inradius and the exradius
at the side c. It seems that

(10) ri =
p2(i)

q2(i)
if i is odd and ri =

2 · q2(i)
p2(i)

if i is even

Something like equation 11 seems to be valid in many cases. Let
√

2 be replaced by
√
d en

let pd(i)/qd(i) be the ith convergent from the continued fraction of
√
d. Then let

(11) ri =
pd(i)

qd(i)
if i is odd and ri =

d · qd(i)
pd(i)

if i is even

is true for i = 1, 2, 3 when (c, p) = (c, d) = (c, sa, sb, d) as in the following table:

c 3 4 6 6 7 7 7 8 9 9 11 11 11 12 · · ·
sa 1 1 1 2 1 2 3 3 1 4 1 3 5 1 · · ·
sb 2 3 5 4 6 5 4 5 8 5 10 8 6 11 · · ·
d 2 3 5 8 6 10 12 15 8 20 10 24 30 11 · · ·

Much more of this has been collected in table 3. It is checked for k = 1, · · · 4. For several
series of solutions, only the basic series belonging to β is c0 or c is stated. Convergents
also occur irregularly in the ’higher’ series (not listed in the table, but marked with nqo*
or nqe*).

3.8. heroncx(50,7). .
(c, sa) = (50, 7) gives d = p = 7 · 43 = 301 and n = c20 = 625
bhaskara(301) gives 58833925376952 − 301 · 3391131082322 = 1.
u = 5883392537695 + 339113108232

√
301

Then follows the estimated value of ymax in bhaskarag(d, n) = bhaskarag(301, 252)

ymax =
√
n · u/

√
301 = 4.94294378511965e6

and bhaskara has to check up to 49429437.
And this takes too much time for my solution with sagemath.
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Appendix A. heroncx(c,x)

#A Version 2.0 Actual program consists of 4 seperate parts.

def heroncx(hc,hx):

hp = hx*(hc - hx)

if is_square(hp):

if hc % 2 == 0:

return sqe(hc,hx)

return sqo(hc,hx)

if hc % 2 == 0:

return nqe(hc,hx)

return nqo(hc,hx)

#B c:even, p:perfect square B^2 - A^2 = -c0^2 => s_c = A - c0 and F = p1*B

def sqe(c,s_a):

sol = [[’r’,’a’,’b’,’c’,’F’]]

s_b = c - s_a

p = s_a * s_b

c0 = c / 2

p1 = sqrt(p)

#C d1 > -d2 > 0, d1*d2 = -c0^2, 2|(d1-d2)

c0di = divisors(c0^2)

for d1 in c0di:

if d1 > c0:

d2 = -c0^2/d1

if (d1 - d2) % 2 == 0:

B = (d1 + d2)/2

A = (d1 - d2)/2

s_c = A - c0

s = A + c0

F = p1 * B

r = F / s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

return sol

#D c:odd, p:perfect square B’^2 - A’^2 = c^2 => s_c = (A’-c)/2 and F = p1*B’/2

def sqo(c,s_a):

sol = [[’r’,’a’,’b’,’c’,’F’]]

s_b = c - s_a

p = s_a * s_b

p1 = sqrt(p)

#E d1 > -d2 > 0, d1*d2 = -c^2, 2|(d1-d2)

cdi = divisors(c^2)
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for d1 in cdi:

if d1 > c:

d2 = -c^2/d1

if (d1 - d2) % 2 == 0:

B1 = (d1 + d2)/2

A1 = (d1 - d2)/2

s_c = (A1 - c)/2

s = (A1 + c)/2

F = p1 * B1/2

r = F/s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

return sol

#F x^2-dy^2 = 1 input d output (a,b) smallest solution in pos.integers

def bhaskara(d):

if is_square(d): return ’none’

k.<sqd> = QuadraticField(d)

cfd = continued_fraction(sqd)

i = 0

a = 0

b = 0

while a^2 - d*b^2 != 1:

i = i + 1

cvd = cfd.convergent(i)

a = numerator(cvd)

b = denominator(cvd)

return (a,b)

#G x^2-d*y^2=n input d,n output sol = list van lists of solutions (a+b*sqd) with b>0

def bhaskara_g(d,n):

if is_square(d):

return ’none’

k.<sqdn> = QuadraticField(d)

cfdn = continued_fraction(sqdn)

ab = bhaskara(d)

u = ab[0] + ab[1]*sqdn

ymax = sqrt(n*u)/sqdn

sol = [d,(ab[0],ab[1])]

YY = 0

while YY <= floor(ymax):

XX = sqrt(d*YY^2 + n)

if XX in ZZ:

sol.append([XX,YY])
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YY = YY + 1

return sol

#H 1.3 A^2 - p0 B^2 = c0^2 ==> s_c = A - c0 and F = p0 p1 B

def nqe(c,s_a):

#I Calculation of p, p0, p1, c0

sol = [[’r’,’a’,’b’,’c’,’F’]]

c0 = c/2

s_b = c - s_a

p = s_a * s_b

p0 = squarefree_part(p)

p1 = sqrt(p/p0)

#J quotients of solutions of bhaskara_g can be a bhaskara-unit.

solu = bhaskara_g(p0,c0^2)

#K print (solu)

k.<sq> = QuadraticField(p0)

u = solu[1][0]+solu[1][1]*sq

solv = []

for j in range(2,len(solu)):

solv.append(solu[j][0]+solu[j][1]*sq)

solB = [solv[0]]

#L

j = 1

while j < len(solv):

kk = 0

test = 1

while kk < len(solB):

soltest = solv[j]/solB[kk]

if soltest[0] in ZZ and soltest[1] in ZZ:

test = 0

kk = kk + 1

if test == 1: solB.append(solv[j])

j = j + 1

#M hier is solB de

lenB = len(solB)

for i in range(lenB):

testB = solB[i]

if testB in ZZ: solB[i] = u * solB[i]

if not testB in ZZ:

while testB[1] > 0:

testB = testB/u

solB[i] = testB * u

#N

for a in solB:
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so = [a*u^i for i in range(aantal)]

for a1 in so:

if a1[1] > 0:

s_c = a1[0] - c/2

s = a1[0] + c/2

F = sqrt(s*s_a*s_b*s_c)

r = F/s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

if a1[1] < 0:

s_c = -a1[0] - c/2

s = -a1[0] + c/2

F = sqrt(s*s_a*s_b*s_c)

r = F/s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

sol.append([’..’,’..’,’..’,’..’,’..’])

return sol

#O 1.4 A^2 - p2 B^2 = c^2 ==> s_c = (A - c)/2 and F = p0 p1 B /2

def nqo(c,s_a):

sol = [[’r’,’a’,’b’,’c’,’F’]]

#P Calculation of p, p0, p1

s_b = c - s_a

p = s_a * s_b

p0 = squarefree_part(p)

p2 = 4 * p0

p1 = sqrt(p/p0)

#Q

solu = bhaskara_g(p2,c^2)

#K print (solu)

k.<sq> = QuadraticField(p2)

u = solu[1][0]+solu[1][1]*sq

solv = []

for j in range(2,len(solu)):

solv.append(solu[j][0]+solu[j][1]*sq)

#R

solB = [solv[0]]

j = 1

while j < len(solv):

kk = 0

test = 1
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while kk < len(solB):

soltest = solv[j]/solB[kk]

if soltest[0] in ZZ and soltest[1] in ZZ:

test = 0

kk = kk + 1

if test == 1: solB.append(solv[j])

j = j + 1

#S

lenB = len(solB)

for i in range(lenB):

testB = solB[i]

if testB in ZZ: solB[i] = u * solB[i]

if not testB in ZZ:

while testB[1] > 0:

testB = testB/u

solB[i] = testB * u

#T

for a in solB:

so = [a * u^i for i in range(aantal)]

for a1 in so:

if a1[1] > 0:

s_c = (a1[0] - c)/2

s = (a1[0] + c)/2

F = sqrt(s*s_a*s_b*s_c)

r = F/s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

if a1[1] < 0:

s_c = -(a1[0] - c)/2

s = -(a1[0] + c)/2

F = sqrt(s*s_a*s_b*s_c)

r = F/s

a = s_b + s_c

b = s_a + s_c

sol.append([r,a,b,c,F])

sol.append([’..’,’..’,’..’,’..’,’..’])

return sol

#U

aantal = var(’aantal’)

aantal = a

(table(heroncx(c,x)))
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Appendix B. tables

Table 1. Primitive Heron triangles up to area (F) is 396

F 2s c b a r type
6 12 5 4 3 1 R-0
12 16 6 5 5 3

2 AI-1
12 18 8 5 5 4

3 OI-3
24 32 15 13 4 3

2 O-1
30 30 13 12 5 2 R-0
36 36 17 10 9 2 O-1
36 54 26 25 3 4

3 O-0
42 42 20 15 7 2 O-0
60 36 13 13 10 10

3 AI-1
60 40 17 15 8 3 R-1
60 50 24 13 13 12

5 OI-1
60 60 29 25 6 2 O-0
66 44 20 13 11 3 O-0
72 64 30 29 5 9

4 O-0
84 42 15 14 13 4 A-0
84 48 21 17 10 7

2 O-0
84 56 25 24 7 3 R-0
84 72 35 29 8 7

3 O-1
90 54 25 17 12 10

3 O-0
90 108 53 51 4 5

3 O-0
114 76 37 20 19 3 O-0
120 50 17 17 16 24

5 AI-1
120 64 30 17 17 15

4 OI-1
120 80 39 25 16 3 O-0
126 54 21 20 13 14

3 A-0
126 84 41 28 15 3 O-0
126 108 52 51 5 7

3 O-0
132 66 30 25 11 4 O-0
156 78 37 26 15 4 O-0
156 104 51 40 13 3 O-0
168 64 25 25 14 21

4 AI-1
168 84 39 35 10 4 O-0
168 98 48 25 25 12

7 O-1
180 80 37 30 13 9

2 O-1
180 90 41 40 9 4 R-1
198 132 65 55 12 9

2 O-0

F 2s c b a r type
204 68 26 25 17 6 A-0
210 70 29 21 20 6 R-0
210 70 28 25 17 6 A-0
210 84 39 28 17 5 O-0
210 84 37 35 12 5 R-0
210 140 68 65 7 3 O-0
210 300 149 148 3 7

5 O-0
216 162 80 73 9 8

3 O-1
234 108 52 41 15 54

13 O-0
240 90 40 37 13 28

3 O-1
252 84 35 34 15 6 A-0
252 98 45 40 13 36

7 O-3
252 144 70 65 9 7

2 O-1
264 96 44 37 15 11

2 O-0
264 132 65 34 33 4 O-0
270 108 52 29 27 5 O-0
288 162 80 65 17 32

9 O-3
300 150 74 51 25 4 O-0
300 250 123 122 5 12

5 O-0
306 108 51 37 20 17

3 O-0
330 100 44 39 17 33

5 O-0
330 110 52 33 25 6 O-0
330 132 61 60 11 5 R-0
330 220 109 100 11 3 O-0
336 98 41 40 17 24

7 A-1
336 112 53 35 24 6 O-0
336 128 61 52 15 21

8 O-1
336 392 195 193 4 12

7 O-1
360 90 36 29 25 8 A-1
360 100 41 41 18 36

5 AI-1
360 162 80 41 41 40

9 OI-1
390 156 75 68 13 5 O-0
396 176 87 55 34 9

2 O-0
396 198 97 90 11 4 O-0
396 242 120 109 13 18

11 O-1
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Table 2. (c, a)− n with c = a+ b with a ∗ b is square (a, b, c ∈ N) and n
is the number of singular Heron trilaterals

(2, 1)− 0
(4, 2)− 0
(5, 1)− 1
(6, 3)− 1
(8, 4)− 1
(10, 1)− 1
(10, 2)− 1
(10, 5)− 1
(12, 6)− 1
(13, 4)− 1
(14, 7)− 1
(15, 3)− 4
(16, 8)− 2
(17, 1)− 1
(18, 9)− 2
(20, 2)− 1
(20, 4)− 1
(20, 10)− 1
(22, 11)− 1
(24, 12)− 4
(25, 5)− 2
(25, 9)− 2
(26, 1)− 1
(26, 8)− 1
(26, 13)− 1
(28, 14)− 1
(29, 4)− 1
(30, 3)− 4
(30, 6)− 4
(30, 15)− 4
(32, 16)− 3
(34, 2)− 1
(34, 9)− 1
(34, 17)− 1
(35, 7)− 4

(36, 18)− 2
(37, 1)− 1
(38, 19)− 1
(39, 12)− 4
(40, 4)− 4
(40, 8)− 4
(40, 20)− 4
(41, 16)− 1
(42, 21)− 4
(44, 22)− 1
(45, 9)− 7
(46, 23)− 1
(48, 24)− 7
(50, 1)− 2
(50, 5)− 2
(50, 10)− 2
(50, 18)− 2
(50, 25)− 2
(51, 3)− 4
(52, 2)− 1
(52, 16)− 1
(52, 26)− 1
(53, 4)− 1
(54, 27)− 3
(55, 11)− 4
(56, 28)− 4
(58, 8)− 1
(58, 9)− 1
(58, 29)− 1
(60, 6)− 4
(60, 12)− 4
(60, 30)− 4
(61, 25)− 1
(62, 31)− 1
(64, 32)− 4

(65, 1)− 4
(65, 13)− 4
(65, 16)− 4
(65, 20)− 4
(66, 33)− 4
(68, 4)− 1
(68, 18)− 1
(68, 34)− 1
(70, 7)− 4
(70, 14)− 4
(70, 35)− 4
(72, 36)− 7
(73, 9)− 1
(74, 2)− 1
(74, 25)− 1
(74, 37)− 1
(75, 15)− 7
(75, 27)− 7
(76, 38)− 1
(78, 3)− 4
(78, 24)− 4
(78, 39)− 4
(80, 8)− 7
(80, 16)− 7
(80, 40)− 7
(82, 1)− 1
(82, 32)− 1
(82, 41)− 1
(84, 42)− 4
(85, 4)− 4
(85, 5)− 4
(85, 17)− 4
(85, 36)− 4
(86, 43)− 1
(87, 12)− 12

(88, 44)− 4
(89, 25)− 1
(90, 9)− 7
(90, 18)− 7
(90, 45)− 7
(91, 28)− 4
(92, 46)− 1
(94, 47)− 1
(95, 19)− 4
(96, 48)− 10
(97, 16)− 1
(98, 49)− 2
(100, 2)− 2
(100, 10)− 2
(100, 20)− 2
(100, 36)− 2
(100, 50)− 2
(101, 1)− 1
(102, 6)− 4
(102, 27)− 4
(102, 51)− 4
(104, 4)− 4
(104, 32)− 4
(104, 52)− 4
(105, 21)− 13
(106, 8)− 1
(106, 25)− 1
(106, 53)− 1
(108, 54)− 3
(109, 9)− 1
(110, 11)− 4
(110, 22)− 4
(110, 55)− 4
(111, 3)− 4
(112, 56)− 7

(113, 49)− 1
(114, 57)− 4
(115, 23)− 4
(116, 16)− 1
(116, 18)− 1
(116, 58)− 1
(117, 36)− 7
(118, 59)− 1
(119, 7)− 4

(120, 12)− 13
(120, 24)− 13
(120, 60)− 13
(122, 1)− 1
(122, 50)− 1
(122, 61)− 1
(123, 48)− 4
(124, 62)− 1
(125, 4)− 3
(125, 25)− 3
(125, 45)− 3
(126, 63)− 7
(128, 64)− 5
(130, 2)− 4
(130, 5)− 4
(130, 9)− 4
(130, 13)− 4
(130, 26)− 4
(130, 32)− 4
(130, 40)− 4
(130, 49)− 4
(130, 65)− 4
(132, 66)− 4
(134, 67)− 1
(135, 27)− 10
(136, 8)− 4
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Table 3. nqx− c− sa − sb − p− ri

nqx c sa sb d ri
nqo 3 1 2 2 r2k−1 = p2(2k − 1)/q2(2k − 1), r2k = 2 · q2(2k)/p2(2k)
nqe 4 1 3 3 r2k−1 = p3(2k − 1)/q3(2k − 1), r2k = 3 · q3(2k)/p3(2k)

nqo* 5 2 3 6 r2k−1 = p6(2k − 1)/q6(2k − 1), r2k = 6 · q6(2k)/p6(2k)
nqe 6 1 5 5 r2k−1 = p5(2k − 1)/q5(2k − 1), r2k = 5 · q5(2k)/p5(2k)
nqe 6 2 4 8 r2k−1 = p8(2k − 1)/q8(2k − 1), r2k = 8 · q8(2k)/p8(2k)
nqe 6 2 4 8 r2k−1 = 2 · p2(2k − 1)/q2(2k − 1), r2k = 2 · 2 · q2(2k)/p2(2k)
nqo 7 1 6 6 r2k−1 = p6(2k − 1)/q6(2k − 1), r2k = 6 · q6(2k)/p6(2k)
nqo 7 3 4 12 r2k−1 = p12(2k − 1)/q12(2k − 1), r2k = 12 · q12(2k)/p12(2k)
nqo 7 3 4 12 r2k−1 = 2 · p3(2k)/q3(2k), r2k = 2 · 3 · q3(4k)/p3(4k)
nqo 7 2 5 10 r2k−1 = p10(2k − 1)/q10(2k − 1), r2k = 10 · q10(2k)/p10(2k)
nqe 8 1 7 7 ri = 7 · q7(2i)/p7(2i)
nqe 8 2 6 12 r2k−1 = 2 · p3(2k − 1)/q3(2k − 1), r2k = 2 · 3 · q3(2k)/p3(2k)
nqe 8 3 5 15 r2k−1 = p15(2k − 1)/q15(2k − 1), r2k = 15 · q15(2k)/p15(2k)
nqo 9 1 8 8 r2k−1 = p8(2k − 1)/q8(2k − 1), r2k = 8 · q8(2k)/p8(2k)
nqo 9 1 8 8 r2k−1 = 2 · p2(2k − 1)/q2(2k − 1), r2k = 2 · 2 · q2(2k)/p2(2k)
nqo 9 2 7 14 ri = 14 · q14(2i)/p14(2i)
nqo 9 3 6 18 r2k−1 = 3 · p2(2k − 1)/q2(2k − 1), r2k = 3 · 2 · q2(2k)/p2(2k)
nqo 9 4 5 20 r2k−1 = p20(2k − 1)/q20(2k − 1), r2k = 20 · q20(2k)/p20(2k)
nqo 9 4 5 20 r2k−1 = 2 · p5(2k − 1)/q5(2k − 1), r2k = 2 · 5 · q5(2k)/p5(2k)
nqe* 10 3 7 21 r2k−1 = p21(6k − 3)/q21(6k − 3), r2k = 21 · q21(6k)/p21(6k)
nqe 10 4 6 24 r2k−1 = p24(2k − 1)/q24(2k − 1), r2k = 24 · q24(2k)/p24(2k)
nqe 10 4 6 24 r2k−1 = 2 · p6(2k − 1)/q6(2k − 1), r2k = 2 · 6 · q6(2k)/p6(2k)
nqo 11 1 10 10 r2k−1 = p10(2k − 1)/q10(2k − 1), r2k = 10 · q10(2k)/p10(2k)
nqo 11 2 9 18 r2k−1 = 3 · p2(2k − 1)/q2(2k − 1), r2k = 3 · 2 · q2(2k)/p2(2k)
nqo 11 3 8 24 r2k−1 = p24(2k − 1)/q24(2k − 1), r2k = 24 · q24(2k)/p24(2k)
nqo 11 3 8 24 r2k−1 = 2 · p6(2k − 1)/q6(2k − 1), r2k = 2 · 6 · q6(2k)/p6(2k)
nqo 11 4 7 28 ri = 28 · 28q28(2i)/p28(2i)
nqo 11 4 7 28 ri = 2 · 7 · q7(4i)/p7(4i)
nqo 11 5 6 30 r2k−1 = p30(2k − 1)/q30(2k − 1), r2k = 30 · q30(2k)/p30(2k)
nqo 12 1 11 11 r2k−1 = p11(2k − 1)/q11(2k − 1), r2k = 11 · q11(2k)/p11(2k)
nqe* 12 2 10 20 r2k−1 = p20(2k − 1)/q20(2k − 1), r2k = 20 · q20(2k)/p20(2k)
nqe* 12 2 10 20 r2k−1 = 2 · p5(2k − 1)/q5(2k − 1), r2k = 2 · 5 · q5(2k)/p5(2k)
nqe 12 3 9 27 r2k−1 = p27(2k − 1)/q27(2k − 1), r2k = 27 · q27(2k)/p27(2k)
nqe 12 3 9 27 r2k−1 = 3 · p3(6k − 3)/q3(6k − 3), r2k = 3 · 3 · q3(6k)/p3(6k)
nqe 12 4 8 32 r2k−1 =??
nqe 12 4 8 32 r2k = 32 · q32(2k)/p32(2k) = 2 · 8 · q8(2k)/p8(2k)) = 4 · 2 · q2(2k)/p2(2k))
nqo 12 5 7 35 r2k−1 = p35(2k − 1)/q35(2k − 1), r2k = 35 · q35(2k)/p35(2k)
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